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Abstract—Cloud platforms typically require users to provide
resource requirements for applications so that resource managers
can schedule containers with adequate allocations. However, the
requirements for container resources often depend on numerous
factors such as application input parameters, optimization flags,
input files, and attributes that are specified for each run. So, it
is complex for users to estimate the resource requirements for a
given container accurately, leading to resource over-estimation
that negatively affects overall utilization. We have designed
a Resource Utilization Based Autoscaling System (RUBAS) that
can dynamically adjust the allocation of containers running in
a Kubernetes cluster. RUBAS improves upon the Kubernetes
Vertical Pod Autoscaler (VPA) system non-disruptively by in-
corporating container migration. Our experiments use multiple
scientific benchmarks. We analyze the allocation pattern of
RUBAS with Kubernetes VPA. We compare the performance
of container migration for in-place and remote node migration
and we evaluate the overhead in RUBAS. Our results show that
compared to Kubernetes VPA, RUBAS improves the CPU and
memory utilization of the cluster by 10% and reduces the runtime
by 15% with an overhead for each application ranging from 5%
to 20%.

I. INTRODUCTION

The Cloud Native Computing Foundation (CNCF) has

driven the adoption of containers in Cloud infrastructures

and it is currently used by over 50,000 projects [1]. The

key platform in CNCF is Kubernetes, which is also CNCF’s

first project. The Kubernetes project is highly active with

over 2,300 unique contributors and has emerged as the most

popular container orchestration platform today. Kubernetes is

reportedly used by companies with massive scale computing

infrastructures such as Google, Yahoo, Intel, Comcast, IBM,

and eBay. Kubernetes provides important features for com-

puting on the cloud such as Service discovery, load balanc-

ing, automatic bin packing of containers based on resource

requirements, horizontal scaling of containers out of the box,

and self healing – when a node fails, Kubernetes automatically

re-schedules the applications on a healthy node.

However, just like other application deployment systems,

Kubernetes too suffers from a resource estimation problem. In

clusters and clouds, a user’s estimate of required resources

(e.g., CPU, Memory, GPU, I/O, Network bandwidth) and

configuration of each node, or VM, for the experiments is

critical in allocating VMs or bare metal nodes, and scheduling

jobs. Accurate resource estimation is a challenge for end

users as the requirement for applications can vary in each run

because it is dependent on various configuration values such as

the input file sizes, optimization flags, input parameter choices,

and the core application kernel.

Errors in resource requirements for applications, specified

by users, is a well known problem and is not restricted to

the use of Kubernetes [2] [3]. Cloud resource managers such

as YARN [4], Omega [5], Mesos schedulers such as Apache

Aurora [6] and Marathon [7], along with HPC resource

managers such as Torque [8] – all require estimation for each

application before it is launched.

It has been recorded that users in about 70% of cases request

more resources than required [9]. In [9], Delimitrou et al. also

argue that over-allocation of resources for applications causes

increased wait times for pending tasks in the queue, reduced

throughput, and under-utilization of the cluster. Incorrect esti-

mation of resources can significantly increase the overall cost,

in Service Units (SUs), charged by cloud platforms running a

set of applications [10].

We also analyzed the Azure Public Dataset [11][12], that

was released by Microsoft. In Figure 1 (top subplot), we show

the average CPU utilization and peak average CPU utilization

over a 24 hour period. The average CPU utilization is always

under 10%, while the peak utilization hovers between 14-17%.

In Figure 1 (bottom sub-plot), for data collected over 30 days,

we show the number of Virtual Machines that had average

CPU utilization in 25% ranges. We again see that over 1.5

million Virtual Machines had average CPU utilization between

0-25%.

Kubernetes attempts to address the resource estimation

problem via the Vertical Pod Autoscaler (VPA) [13] feature,

which does not require any user input on resource requirement.

The VPA generates an estimate based on the resources the

application is currently using and then corrects it by re-

scheduling the application with the newly estimated resources.
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Fig. 1: Azure Cluster CPU utilization analysis: the top
graph shows the cluster peak average and average CPU
utilization over 24 hour period. The bottom figure shows the
number of virtual machines with average CPU utilization in
the respective ranges over 30-day period.

However, it has a disruptive approach. Its correction approach

requires killing the application and then re-scheduling it with

estimated resources. While this approach works for stateless

services, it is a serious drawback for stateful and performance

sensitive applications.

Therefore, this paper explores new ways to augment con-
tainer orchestration in Kubernetes that dynamically esti-
mates the amount of resources an application requires, non-
disruptively migrates, updates the resource allocation, and
continues with the application execution.

We have designed a flexible and configurable framework,

Resource Utilization Based Autoscaling System (RUBAS),

to address the resource correction problem in a Kubernetes

setup. RUBAS starts with the users’ resource requests for each

application and launches it on the cluster. It then monitors

the application’s resource usage via Metrics Server at a con-

figurable interval with the default set to 60 seconds. If an

application’s usage is beyond 10% of the allocated resources,

then RUBAS creates a new estimate, checkpoints the container

in which the application is running, and re-schedules it on the

cluster with the new estimate. Each new estimate is calculated

as the sum of median and a buffer, where buffer is defined

as the positive deviation of the observation. This approach

gives us a better estimate compared to the Kubernetes VPA,

which uses the peak values rather than central tendencies.

The peak observation could be an outlier in the observed

data and could result in over-allocation. The sum of median

and positive deviation also negates the effects of outliers.

RUBAS can re-schedule on the same or a different node in the

cluster. The monitoring interval is a configurable parameter

and can be set by the cluster administrator. RUBAS uses

Checkpoint Restore in Userspace (CRIU) to create checkpoints

and restore docker container execution, and therefore, does

not require the application to be killed and restarted. RUBAS

migrates workloads to nodes/cluster that have the required

resources. Unlike Kubernetes, it does not assume that the

resource allocation in an existing node can be scaled up

seamlessly. We note that the VPA approach of vertical auto

scaling is not possible with cloud resource scheduling tools

such as Mesos because allocation changes are not possible

once an application has been scheduled. However, the RUBAS

approach could be extended to Mesos.

While RUBAS works best for target applications that do not

have frequent resource variations, its design can also cater to

those with frequent variations via multiple migrations. We note

that several HPC applications have a resource consumption

pattern wherein the resource usage does not vary frequently

after the initial phase [14].

Specifically, we make the following contributions:

• This paper describes design and implementation of a new
non-disruptive and dynamic vertical scaling system for
Kubernetes, called RUBAS.

• We study and quantify the design trade-offs in different
design choices on the performance of RUBAS including
profiling interval, container migrations and application
restart overheads.

• We present results and analysis of RUBAS performance
compared to the Kubernetes VPA in terms of CPU and
memory allocation patterns, application runtime, and
overall cluster resource utilization.

II. DESIGN

A. Kubernetes Architecture

In Figure 2, we show the components of a typical Kuber-

netes setup. It has a Master and Worker nodes along with etcd
for maintaining state of the Kubernetes cluster. The master

node consists of an API server, Scheduler, and a Controller
Manager. The controller manager is responsible for the core

functions of Kubernetes. These include replication controller,

endpoints controller, namespace controller, and service ac-

counts controller. The API server helps in validation and

configuring the data for API objects such as pods, and services.

The scheduler has many policies and is topology aware. It

uses the topology information to appropriately schedule the

pod on a node based on its policy requirement. The worker

nodes in Kubernetes consist of a kubelet, proxy system, and

a Docker runtime environment. The kubelet is responsible

for communications between the worker node and the master

node. It maintains the state of the worker node and executes

the pods as defined in the PodSpec provided by the master.

The PodSpec is a YAML or JSON object that describes the

pod. Kubelet reads the PodSpec and executes the pod and

its corresponding container via Docker. The proxy is used

to communicate between the pods and sets up the network

infrastructure [15].

B. RUBAS design

In Figure 3, we list the steps involved in executing a

job. An application is first submitted to RUBAS. RUBAS

creates the launch specification required for the job to execute

on the Kubernetes cluster, which includes an unique-id to

monitor the application’s resource usage. The specification
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Fig. 2: General architecture of Kubernetes showing different
components of a typical Kubernetes setup.

is sent to Kubectl, which is a Kubernetes component for

managing the cluster. Kubectl forwards the job to Kubernetes

Master. Kubernetes Master schedules the application on the

worker nodes. In step 5, the metrics server collects resource

utilization details of each container running on the cluster.

In step 6, RUBAS checks the utilization of each container

against the allocation. If the allocation and the utilization

matches, then RUBAS allows the execution to continue. If

the allocation and utilization does not match, then in Step 7,

RUBAS sends two instructions to Docker – one to checkpoint

the container and another to create an image that contains

the data generated by the container. Docker then creates these

images in step 8. In step 9, the image and checkpoint are

stored in NFS, so that they are accessible across the cluster.

In step 9a, the information of the created checkpoint and the

image is sent to RUBAS. In step 10, RUBAS creates the launch

specification with the checkpoint and the image and sends it

to kubectl. Kubectl forwards the job to Kubernetes master,

which then schedules the job on the worker nodes. In step 13,

the checkpoint and the image is downloaded to the selected

machine and the container is restored.

Fig. 3: Architecture of RUBAS: workflow of profiling, check-
pointing and resuming applications in the cluster.

III. VERTICAL AUTO-SCALING

A. Discussion- Kubernetes VPA

The current implementation of VPA does not require the

user to provide any resource requests, for CPU and memory,

for a pod. By default, the initial allocation in Kubernetes

is a configurable lower limit or the minimum guaranteed

resources allocated for a pod. The VPA uses a recommender,

which tracks the historical usage of the pod and suggests a

new limit whenever needed. The default formula used by the

recommender for new resources is the following:

New Resources = max{peak + MinBumpUp, peak x BumpUpRatio}
where

peak = max memory used in observed data,

MinBumpUp = 100MB & BumpUpRatio = 1.2

While these equations are modifiable, this resource correction

approach itself has drawbacks. For example, the peak memory

usage could have been a temporary spike in the application,

but VPA aims to allocate for that amount throughout the

application’s duration. Furthermore, the current VPA imple-

mentation restarts the pod every time the allocation is changed.

Such a disruptive process results in a loss of the state of

the containers. Though Docker released a Docker update, to

allow updatation of the resources allocated to the containers, it

cannot be directly implemented with large distributed systems

like Kubernetes. This is because there are various components

such as scheduler, control manager and kubelet that depend

on the original allocation to take decisions. Unless all these

components are aligned, it is currently difficult to leverage the

new Docker update feature for VPA.

B. Rresource Estimation: RUBAS vs. VPA

• RUBAS has two key modules:

– A runtime profiling and estimation system. In earlier

work, we have shown the effectiveness of a similar

runtime profiling system [16] [17].

– A vertical scaling system that can change the allocation

at runtime non-disruptively (if required).

• RUBAS schedules all the applications as they arrive on

the cluster and starts collecting resource usage data at one

second intervals.

• The profiling data collection involves CPU and memory

usage and is obtained via the Metrics Server. Based on

this data, a new estimation is generated every 60 seconds.

• Based on the data collected every 60 seconds, an estimate

is generated using the following formula:

buffer =

∣∣∣∣∣∣∣

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

∣∣∣∣∣∣∣
Required Resource = Median Of Observations + buffer

In the formula, N denotes the total number of observa-

tions, xi denotes the ith observation and x denotes the

arithmetic mean of the observations. The buffer is the

absolute deviation of the observed values.

• As the applications are initially scheduled without any

resource allocation, we set the limits via these patching

options:

– Disruptive: The applications are restarted upon patch-

ing. This is used when an application restart does not

affect the outcome.
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– Non-Disruptive: The applications are checkpointed and

restarted using the checkpoint. This process may in-

volve container migration. If the estimated amount

of resources are not available on the same node,

the application is migrated to another node that has

the availability. However, in case there are no nodes

with the available resources, the application continues

execution in its current state.

• The process of estimation and patching continues until

the application terminates.

IV. EVALUATION

A. Evaluation Setup

1) Setup: The cluster setup for the experiments consisted

of 30 Kubernetes worker nodes and 1 Kubernetes master node,

all in the AWS cloud. The details of the setup are presented in

Table I. Table II provides details about the benchmarks used

as workloads in the experiments.

Equipment/OS/Software Description/Version

AWS EC2 Nodes (31) - Compute Optimized c5.2xlarge, 8
core processor at 2.3GHz, 16 GB
DDR4 RAM

Operating System Ubuntu 18.04.1 LTS

Docker 17.06.1

Kubernetes 1.12.3

TABLE I: Description of the infrastructure used in the exper-
iments on Amazon AWS EC2 Cloud cluster.

Workload Description

1. Blackscholes Computational financial analysis application

2. Canneal Engineering application

3. Ferret Similarity search application

4. Fluidanimate Application consists of animation tasks

5. Freqmine Data mining application

6. Swaptions Financial Analysis application

7. Streamcluster Data mining application

8. DGEMM Dense-matrix multiply benchmark

TABLE II: Description of the benchmarks from PARSEC (1-7),
and DGEMM used in the experiments.

B. Determining the best monitoring interval

The monitoring interval has a significant effect on the

resource estimation and needs to be determined experimentally

for each class of applications. We conducted experiments for

monitoring intervals ranging from 15 seconds to 90 seconds.

Figure 4 presents the results at intervals 15, 30 and 60 seconds

along with the runtime. In these experiments we initially allo-

cated resources based on static profiling. The number in each

bar represents the number of container migrations that were

performed before the completion of execution. We observe

that at 15 seconds, there are several container migrations

that results in high overhead. For example, DGEMM has 8

container migrations and the runtime is almost 5 times the

runtime for DGEMM when it is run with optimal resources as

determined by static profiling. The overhead can be attributed

to estimation error due to insufficient data points. At the 30

second interval, we see a reduction in the number of container

migrations and the runtime improves. However, it is still higher

than the runtime achieved when the optimal resources are

allocated. At the 60 second interval, we observe the least

number of container migrations and the runtimes are very close

to the runtimes obtained with optimal resource allocations.

The overhead due to the estimation and container migration

on the benchmarks ranges from 5% to 20%. At 75 and 90

second intervals, we do not see any improvement for either

the number of container migrations or the runtime. We thus

conclude that 60 seconds is ideal monitoring interval for the

given set of benchmarks.
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Fig. 4: Determining the best monitoring interval. The number
in each bar represents the migrations for allocations corre-
sponding to different monitoring intervals.
C. Comparison with Kubernetes VPA

In Figure 5, we provide a comparison with Kubernetes VPA

for runtime and number of corrections. The presented results

are average of 10 executions. We conducted experiments for

3 different settings: (1) RUBAS without resource allocation

restrictions; (2) Kubernetes VPA without resource allocation

restrictions; and (3) 30% resources beyond the optimal re-

quirement, as determined by static profiling Kubernetes VPA.

The results show that even with grossly incorrect allocations,

RUBAS is able to estimate and correct the allocation in all

the applications. In comparison, Kubernetes VPA performs

multiple restarts, which increases the overhead and in some

cases the runtime is more than twice that of RUBAS. However,

when the resource allocation is closer to the optimal resources,

Kubernetes VPA and RUBAS have similar performance. In the

case of Blackscholes and Canneal, Kubernetes VPA peforms

better than RUBAS. It is to be noted that for Kubernetes to

outperform RUBAS, the user needs to know in advance the

near optimal resource requirement for each application. When

such information is not available, RUBAS is a better choice

compared to Kubernetes VPA.

D. Comparison of allocation, RUBAS and Kubernetes VPA

In Figure 6, we show the allocations made by RUBAS

and Kubernetes VPA at various stages of execution for the

DGEMM application. Kubernetes VPA takes 4 corrections for

the DGEMM benchmark to reach the optimal CPU allocation

whereas RUBAS takes only 2 corrections. For memory allo-

cations, Kubernetes VPA takes 3 corrections while RUBAS
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Fig. 5: RUBAS vs. Kubernetes VPA: runtime and number of
corrections.

takes 2 corrections. As RUBAS has more accurate resource

estimates it performs fewer corrections. Due to the inclusion

of container migration, the runtime is lower by 63% in the case

of RUBAS. Kubernetes VPA restarts after every correction,

whereas RUBAS resumes from the checkpoint.
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Fig. 6: CPU and memory allocation with estimation for
DGEMM benchmark in RUBAS and Kubernetes VPA setups.

E. Disruptive vs Non-Disruptive Vertical Scaling

In Figure 7, we show the difference in runtime while using

the RUBAS estimation methodology. For the experiment we

used 60 second monitoring interval as explained in Section

IV-B. In all cases, we see an improvement in runtime when

using migrations. For DGEMM, we see a 49.10% decrease

in runtime, Blackscholes has 23.65% decrease, Canneal has

23.5%, Ferret has 11.97%, Fluidanimate has 3.33%, Freqmine

has 7.81%, Swaptions has 13.49%, and Streamcluster has

4.91% decrease in runtime. As the size of the of the migration

image increases, the runtime gain decreases as can be seen

with applications such as Fluidanimate, Freqmine and Stream-

cluster where the gains are less than 10%. On the other hand,

the benefits of migration are more pronounced when the initial

estimations are either incorrect or the application changes its

requirement. For example, in DGEMM, the application slowly

increases its usage and this leads to incorrect estimations,

which then causes multiple migrations/restarts.

In Figure 8, we compare the migration costs of RUBAS for

in-place scaling on the same node versus scaling on another

node. We used the nodeSelector option in the Kubernetes

PodSpec to control in-place vs remote node migration. By

pinning the pod to a particular node we were able to perform

in place migrations, which resulted in runtime gains. We

notice a 4.1% decrease in runtime for DGEMM, 2.09% for

Blackscholes, 2.61% for Canneal, 5.62% for Ferret, 6.89%

for Fluidanimate, 5.73% for Freqmine, 4.58% for Swaptions,

and 2.13% for Streamcluster.

DGEMM
Blackscholes

Canneal

Ferret
Fluidanimate

Freqmine

Swaptions

Streamcluster

0

100

200

300

400

500

600

DGEMM
Blackscholes

Canneal

Ferret
Fluidanimate

Freqmine

Swaptions

Streamcluster

Migration Vs Restart

Ti
me

 i
n 

Se
co

nd
s

Migration Restart

Fig. 7: Migration vs Restart with interval size of 60 seconds.
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F. Cluster utilization

1) Setup: We ran a total of 10 iterations, where each itera-

tion consisted of 135 instances of each benchmark presented

in Table II, i.e. a total of 1080 jobs. The experiment was

executed on a cluster of 30 c5.2xlarge nodes as described

in Table I. Apart from the execution process explained in

the section II-B, the cluster experiments had some additional

conditions for migration. If the estimated resource requirement

was more than the available resources in the cluster, then the

application was allowed to continue execution, as it is better

to continue execution rather than wait in the queue till the

cluster has available resources. In the meanwhile, when the

estimated resources was generated, and if it was determined

that the application needs to be scaled, then a checkpoint was

created regardless of the resource availability. The idea was to

address situations when an application fails due to incorrect

resource allocation while it is allowed to continue execution.

2) Performance (runtime): In Figure 9, we show the av-

erage runtime of default Kubernetes, Kubernetes VPA and

RUBAS. All three setups were provided with the same set

of applications with the same resource requests, i.e. optimal

+ 30% resources. In our experiments, we see that default

Kubernetes, with no ability to modify the resources, takes
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much longer to complete. On average, default Kubernetes took

32162 seconds. In comparison, Kubernetes VPA has a much

better runtime of 23127 seconds on average. This accounts

to about 28% decrease in runtime. Kubernetes with VPA

performed much better than the default Kubernetes even by

restarting the pods. Restarting the pods should have been

a detrimental step but because VPA is able to correct the

allocation and make resources available, more applications

are launched by Kubernetes resulting in lower runtime. Our

approach, RUBAS, achieves improvement by avoiding the

overhead of restarts by incorporating container migration.

We see that with RUBAS the runtime further reduces to

19457 seconds. This accounts to about 16% improvement over

Kubernetes VPA and about 40% improvement over default

Kubernetes.

0 5k 10k 15k 20k 25k 30k 35k

Default Kubernetes

Kubernetes VPA

RUBAS

Cluster Runtime results

Time in Seconds

Fig. 9: Runtime results for a cluster with 30 nodes, running
1080 jobs to completion.

3) CPU utilization: In Figure 10, we show the CPU utiliza-

tion corresponding to the allocation. In default Kubernetes, we

see that only about 47% of the allocated CPU was used by the

applications. This means that more than half of the allocated

CPU was idle. As there are several application waiting in the

queue, the under utilization of resources effectively increases

the overall runtime. Kubernetes with VPA was able to correct

the allocation and thus had a much better utilization at about

72%. However, Kubernetes VPA has a drawback in the way the

applications are restarted. Instead of restarting the application

immediately, we observed that Kubernetes puts the task in

the queue, which delays the execution of the application. In

situations where the application is providing a service, there

could be a long gap till the application is restarted. We address

this issue in RUBAS. The application that needs to be resumed

has the highest priority in the RUBAS queue. With RUBAS,

using container migration, we see even better CPU utilization

at about 82%.

4) Memory utilization: In Figure 11, we show the average

memory utilization of the cluster with default Kubernetes,

Kubernetes with VPA, and RUBAS. The trends are similar to

the CPU utilization data presented in Section IV-F3. Default

Kubernetes had an average memory utilization of 43% when

the allocation was 100%. Kubernetes VPA improved the

utilization to 76% as it was able to re-size the applications.

RUBAS further improved the utilization to 86%.
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Fig. 10: CPU utilization results for a cluster with 30 nodes,
running 1080 jobs to completion.

Kubernetes Kubernetes-VPA RUBAS
0

20

40

60

80

Average Cluster memory AllocationAverage Cluster memory Allocation Average Cluster memory UsageAverage Cluster memory Usage

Cluster Memory Allocation vs Usage Percentage

Fig. 11: Memory utilization results for a cluster with 30 nodes,
running 1080 jobs to completion.

G. Effects of Migration- Discussion

1) Ability to vertically scale for ad-hoc jobs: Vertical

scaling of service jobs does not require migration, as the

services generally do not need to maintain the state after

restart. Also, service jobs generally have replicated jobs that

help with load balancing. So a restart for these jobs is not very

critical. However, ad-hoc or one-time jobs need to maintain

the state of execution or else they will have to start execution

again from the beginning. We have shown that RUBAS can

migrate ad-hoc jobs and continue the execution while being

able to vertically scale them.

2) Ripple Effect of Migrations: Ripple effect happens when

the container keeps migrating from one machine to another

without any actual work being done. This happens when

the time frame for estimation is small and the estimation is

inaccurate. We see such an example for the 15 second interval

in Figure 12, which has 8 migrations and the runtime is twice

the runtime of 60 second interval.

3) Migration is Not Always the Best Choice: There are

some situations where container migration is not the best

choice. For state-less applications, it not required to maintain

state. So, instead of migration, restart of the application

with the appropriate resources is a better choice. Most state-

less applications are often replicated for the purpose of load

balancing. If one of the replicated applications is restarted,

there will be a momentary degradation of the service until a

new replica takes over.

4) Stability with Multiple Container Migrations: In our

experiments we observed that when an application is migrated

more than 4 times, then the migration image is sometimes

generated incorrectly. This is a current limitation of CRIU.
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Fig. 12: Effects of incorrect estimations caused by smaller
monitoring interval. Each drop in CPU utilization is due to
migration (8 in total for 15 second interval). The benchmark
used is DGEMM and monitoring interval is 15, 30, and 60
seconds.

5) Incorrect estimations could lead to higher execution
time: In applications that generate a lot of data, the migrations

times are high as the generated data needs to packaged in a

Docker image and then copied to the target machine. This

effect is quantified in Figure 8, where we observe considerable

increase in runtime for Ferret, Fluidanimate and Freqmine

applications due to migration. In Figure 12, at 15 second

interval we have a runtime of over 300 seconds for DGEMM,

while at 60 second interval it is less than half. The smaller

monitoring interval is causing to incorrect estimations and that

leads to higher runtime.

6) Migration Downtime: Container migration involves mul-

tiple steps, which are time consuming. These steps include:

• Checkpoint Creation: This process is taken care of by CRIU.

It creates a checkpoint of the current state of the Docker

container. However, it does not checkpoint any changes that

the Docker image has made on the storage.

• Creating checkpointed Docker image: As CRIU does not

create a checkpoint for the data generated by the container,

RUBAS needs to handle it separately. RUBAS creates a new

Docker image from the running container and copies all the

data that is generated by the container. This process is time

consuming and the overhead depends on the generated size

of the data.

• Transferring checkpoint and checkpointed Docker image to

the target machine: Once the application is re-scheduled to

be launched on a node by Kubernetes, we need to transfer

the checkpoint and the checkpointed Docker image on the

target node. This could be expensive if the application is

relaunched on a different node. We note this behaviour in

Figure 8 for Ferret, Fluidanimate, and Freqmine where the

transfer time is about 15-20 seconds. This is due to the

size of the checkpointed Docker image and the network

bandwidth between the two nodes.

• Resuming from the checkpoint: CRIU enables resumption

of the container on the target node. CRIU uses the newly

created Docker image from the checkpoint instead of the

original Docker image.

Benchmarks Size
(MB)

Chk
Creation

Image
creation

Transfer Resume

1. Blackscholes 74.5 <1 1 1 <1

2. Canneal 63.36 1 1 1 <1

3. Ferret 636.6 2 13 16 <1

4. Fluidanimate 733.26 2 12 17 <1

5. Freqmine 820.14 3 13 20 <1

6. Swaptions 236.3 2 6 7 <1

7. Streamcluster 412.6 2 7 8 <1

8. DGEMM 101.2 1 3 1 <1

TABLE III: Average downtime of each benchmark at different
stages (Unit: second).

V. RELATED WORK

The area of container migration is still in its infancy, but

virtual machine migration is a well studied topic. There are

many projects on scheduling and VM migration in the cloud

with focus on the effect bin packing algorithms cloud [18],

energy aware scheduling, and migration prediction for virtual

machine migration in the cloud [19].

The pMapper [20] project studied continuous dynamic allo-

cation and optimization on virtual machines(VM). They have

a similar approach as RUBAS, but in the context of virtual

machines.

There are many projects that purely concentrate on vertical

scaling in the context of VMs on various cloud platforms and

explore different aspects of vertical scaling such as application

driven vertical scaling, vertical scaling across federated clouds,

and on specific platforms such as OpenStack [21], [22]. Han

et. al. [23] presented a lightweight resource allocation system

that uses the resource utilization of applications running in the

VM to inform scheduling decision for VM allocation.

Other projects such as [24], [25] show the effects of

using applications usage to aid VM scheduling decisions. The

positive effects of dynamic vertical and horizontal scaling of

virtual machines and containers has also been studied [26].

Our work involves enabling vertical scaling for stateful appli-

cations i.e. vertical scaling for containers where continuation

of execution is important. DoCloud [27], presents a proactive

method of performing vertical scaling of Docker containers

that run web applications. They pro-actively vary the resource

allocation for containers to attain higher utilization. Hadley

et. al. [28] have shown the capability of CRIU (Checkpoint

Restore In Userspace) across multiple clouds. They show this

capability for both stateful and stateless applications. However,

we are not aware of any work that combines container mi-

gration capability for stateful applications along with vertical
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scaling. This paper demonstrates this new capability and

explores its efficacy when used in a Kubernetes environment.

VI. CONCLUSION

RUBAS provides an effective correction for resource allo-

cation for applications running inside a Kubernetes cluster.

We compare RUBAS with the current state of art, Kubernetes

Vertical Pod Autoscaler (VPA), which also aims at providing

accurate resource allocation. RUBAS provides many benefits

over Kubernetes VPA by providing a non-disruptive method of

auto-scaling, a more accurate estimation methodology which

together improve the cluster CPU and memory utilization

by 10%, and reduced runtime by 15%. We see an overhead

for each application runtime in the range of 5% to 20%,

but the applications have near accurate allocations which

allows the cluster to be utilized by other applications. RUBAS

also decreases the number of restarts over Kubernetes VPA.

We also, quantify the overhead of container migration in

RUBAS at various stages of migration, conduct experiments

to determine the best interval size for monitoring the container

for the purpose of estimations, compare the allocation pattern

of RUBAS with Kubernetes VPA, and evaluate the overhead of

In-Place scaling and remote node scaling. Overall, even with

grosly inaccurate allocations, RUBAS is able to correct the

allocations with much less number of corrections than Kuber-

netes VPA while providing much improved cluster utilization.
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